Isolation of a specific lipoamide dehydrogenase for a branched-chain keto acid dehydrogenase from Pseudomonas putida.
نویسندگان
چکیده
We purified lipoamide dehydrogenase from cells of Pseudomonas putida PpG2 grown on glucose (LPD-glu) and lipoamide dehydrogenase from cells grown on valine (LPD-val), which contained branched-chain keto acid dehydrogenase. LPD-glu had a molecular weight of 56,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and LPD-val had a molecular weight of 49,000. The pH optimum for LPD-glu for reduced nicotinamide adenine dinucleotide oxidation was 7.4, compared with pH 6.5 for LPD-val. When oxidized nicotinamide adenine dinucleotide was included in the assay mixture, the pH optima were 7.1 and 5.7, respectively. There was also a difference in pH optima between the two enzymes for oxidized nicotinamide adenine dinucleotide reduction, but the Michaelis constants and maximum velocities were similar. A purified preparation of branched-chain keto acid dehydrogenase, which was deficient in lipoamide dehydrogenase, was stimulated 10-fold by LPD-val but not by LPD-glu, which suggested that the branched-chain keto acid dehydrogenase of P. putida has a specific requirement for LPD-val. In contrast, a partially purified preparation of 2-ketoglutarate dehydrogenase that was deficient in lipoamide dehydrogenase was stimulated by LPD-glu but not by LPD-val, indicating that this complex has a specific requirement of LPD-glu.
منابع مشابه
Molecular cloning of genes encoding branched-chain keto acid dehydrogenase of Pseudomonas putida.
We cloned the structural genes for the individual subunits of the branched-chain keto acid dehydrogenase multienzyme complex on a 7.8-kilobase EcoRI-SstI restriction fragment of Pseudomonas putida chromosomal DNA by cloning into the broad-host-range vector pKT230. A direct selection system for growth on valine-isoleucine agar was achieved by complementation of P. putida branched-chain keto acid...
متن کاملCommon enzymes of branched-chain amino acid catabolism in Pseudomonas putida.
Two types of Pseudomonas putida PpG2 mutants which were unable to degrade branched-chain amino acids were isolated after mutagenesis and selection for ability to grow on succinate, but not valine, as a sole source of carbon. These isolates were characterized by growth on the three branched-chain amino acids (valine, isoleucine, and leucine), on the corresponding branched-chain keto acids (2-ket...
متن کاملRelationship of lipoamide dehydrogenases from Pseudomonas putida to other FAD-linked dehydrogenases.
Pseudomonas putida produces two lipoamide dehydrogenases, LPD-glc and LPD-val. LPD-val is specifically required as the lipoamide dehydrogenase of branched-chain keto acid dehydrogenase and LPD-glc fulfills all other requirements for lipoamide dehydrogenase. Both proteins are dimers with one FAD per subunit. LPD-glc has an absorption maximum at 455 nm, but LPD-val has a maximum at 460 nm. Compar...
متن کاملRegulation of valine catabolism in Pseudomonas putida.
The activities of six enzymes which take part in the oxidation of valine by Pseudomonas putida were measured under various conditions of growth. The formation of four of the six enzymes was induced by growth on d- or l-valine: d-amino acid dehydrogenase, branched-chain keto acid dehydrogenase, 3-hydroxyisobutyrate dehydrogenase, and methylmalonate semialdehyde dehydrogenase. Branched-chain amin...
متن کاملCrc is involved in catabolite repression control of the bkd operons of Pseudomonas putida and Pseudomonas aeruginosa.
Crc (catabolite repression control) protein of Pseudomonas aeruginosa has shown to be involved in carbon regulation of several pathways. In this study, the role of Crc in catabolite repression control has been studied in Pseudomonas putida. The bkd operons of P. putida and P. aeruginosa encode the inducible multienzyme complex branched-chain keto acid dehydrogenase, which is regulated in both s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 148 2 شماره
صفحات -
تاریخ انتشار 1981